
1

Create with Code
Unit 6 Lesson Plans

© Unity 2021 Create with Code - Unit 6



2

6.1 Project Optimization

Techniques:
1: Variable attributes

2: Unity Event Functions

3: Object Pooling

Length: 30 minutes

Overview: In this lesson, you will learn about a variety of different techniques to
optimize your projects and make them more performant. You may not notice
a huge difference in these small prototype projects, but when you’re
exporting a larger project, especially one for mobile or web, every bit of
performance improvement is critical.

Project
Outcome:

Several of your prototype projects will have improved optimization, serving
as examples for you to implement in your personal projects

Learning
Objectives:

By the end of this lesson, you will be able to:
- Recognize and use new variable attributes to keep values private, but still

editable in the inspector
- Use the appropriate Unity Event Functions (e.g. Update vs. FixedUpdate vs.

LateUpdate) to make your project run as smoothly as possible
- Understand the concept of Object Pooling, and appreciate when it can be

used to optimize your project

© Unity 2021 Create with Code - Unit 6



3

1: Variable attributes
In the course, we only ever used “public” or “private” variables, but there are a lot of other variable
attributes you should be familiar with.
1. Open your Prototype 1 project and open the

PlayerController.cs script
2. Replace the keyword “private” with [SerializeField],

then edit the values in the inspector
3. In FollowPlayer.cs, add the [SerializeField] attribute to

the Vector3 offset variable
4. Try applying the “readonly”, “const”, or “static”

attributes, noticing that all have the effect of removing
the variable from the inspector

- New Concept: using [SerializeField]
instead of public attribute

- Tip: “protected” is very similar to
“private”, but would also allow
access to derived classes

[SerializeField] private float speed = 30.0f;

[SerializeField] private float turnSpeed = 50.0f;

[SerializeField] private Vector3 offset = new Vector3(0, 5, -7);

2: Unity Event Functions
In the course we only ever used the default Update() and Start() event functions, but there are others
you might want to use in different circumstances.
1. Duplicate your main Camera, rename it “Secondary

Camera”, then deactivate the Main Camera
2. Reposition the Secondary camera in a first-person view,

then edit the offset variable to match that position
3. Run your project and notice how choppy it is
4. In PlayerController.cs, change “Update” to

“FixedUpdate”, and in FollowPlayer.cs, change “Update”
to “LateUpdate”, then test again

5. Delete the Start() function in both scripts, then
reactivate your Main Camera

- New Concept: “Event Functions”
are Unity’s default methods that
run in a very particular order over
the life of a script (e.g. Start and
Update)

- New Concept: Update vs
FixedUpdate vs LateUpdate

- New Concept: Awake vs Start
- Tip: If you’re not using Start or

Update, it’s cleaner to delete them

PlayerController.cs

void FixedUpdate() { ...

FollowPlayer.cs

void LateUpdate() { ...

© Unity 2021 Create with Code - Unit 6



4

3: Object Pooling
Throughout the course, we’ve created a lot of prototypes that instantiated and destroyed objects during
gameplay, but there’s actually a more performant / efficient way to do that called Object Pooling.

1. Open Prototype 2 and create a backup
2. Download the Object Pooling unity

package and import it into your scene
3. Reattach the PlayerController script to

your player and reattach the
DetectCollisions script to your animal
prefabs (not to your food prefab)

4. Attach the ObjectPooler script to your
Spawn Manager, drag your projectile into
the “Objects To Pool” variable, and set
the “Amount To Pool” to 20

5. Run your project and see how the
projectiles are activated and deactivated

- Warning: You will be overwriting your old work
with this new system, so it’s important to make a
backup first in case you want to revert back

- New Concept: Object Pooling: creating a
reusable “pool” of objects that can be activated
and deactivated rather than instantiated and
destroyed, which is much more performant

- Tip: Try reading through the new code in the
ObjectPooler and PlayerController scripts

- Don’t worry: If your project is small enough that
you’re not experiencing any performance issues,
you probably don’t have to implement this

Lesson Recap
New Concepts
and Skills

● Optimization
● Serialized Fields
● readonly / const / static / protected
● Event Functions
● FixedUpdate() vs. Update() vs. LateUpdate()
● Awake() vs. Start()
● Object Pooling

© Unity 2021 Create with Code - Unit 6



5

6.2 Research and Troubleshooting

Steps:
Step 1: Make the vehicle use forces

Step 2: Prevent car from flipping over

Step 3: Add a speedometer display

Step 4: Add an RPM display

Step 5: Prevent driving in mid-air

Example of project by end of lesson

Length: 75 minutes

Overview: In this lesson, you will attempt to add a speedometer and RPM display for
your vehicle in Prototype 1. In doing so, you will learn the process of doing
online research when trying to implement new features and troubleshoot
bugs in your projects. As you will find out, adding a new feature is very rarely
as simple as it initially seems - you inevitably run into unexpected
complications and errors that usually require a little online research. In this
lesson, you will learn how to do that so that you can do it with your own
projects.

Project
Outcome:

By the end of this lesson, the vehicle will behave with more realistic physics,
and there will be a speedometer and Revolution per Minute (RPM) display.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Use Unity Forums, Unity Answers, and the online Unity Scripting

Documentation to implement new features and troubleshoot issues with
your projects

© Unity 2021 Create with Code - Unit 6



6

Step 1: Make the vehicle use forces
If we’re going to implement a speedometer, the first thing we have to do is make the vehicle accelerate
and decelerate more like a real car, which uses forces - as opposed to the Translate method.
1. Open your Prototype 1 project and make a backup
2. Replace the Translate call with an AddForce call on

the vehicle’s Rigidbody, renaming the “speed” variable
to “horsePower”

3. Increase the horsePower to be able to actually move
the vehicle

4. To make the vehicle move in the appropriate direction,
change AddForce to AddRelativeForce

- New Concept: using Unity
Documentation

- New Concept: using Unity Answers
- New Concept: AddRelativeForce
- Don’t worry: Still a big issue where

the vehicle can drive in air and that
it flips over super easily!

[SerializeField] private Rigidbody playerRb;

void Start() {

playerRb = GetComponent<Rigidbody>();

}

void FixedUpdate() {

transform.Translate(Vector3.forward * speed * verticalInput);

playerRb.AddRelativeForce(Vector3.forward * verticalInput * horsePower);

}

© Unity 2021 Create with Code - Unit 6



7

Step 2: Prevent car from flipping over
Now that we’ve implemented real physics on the vehicles, it is very easy to overturn. We need to figure
out a way to make our vehicle safer to drive.
1. Add wheel colliders to the wheels of your vehicle and

edit their radius and center position, then disable any
other colliders on the wheels

2. Create a new GameObject centerOfMass variable, then
in Start(), assign the playerRb variable to the
centerOfMass position

3. Create a new Empty Child object for the vehicle called
“Center Of Mass”, reposition it, and assign it to the
Center Of Mass variable in the inspector

4. Test different center of mass positions, speed, and
turn speed values to get the car to steer as you like

- New Concept: Wheel colliders
- New Concept: Center of Mass
- Don’t Worry: We can still drive the

vehicle when it’s sideways or
upside down

- Warning: This is still not the proper
way to do vehicles - should actually
be rotating / turning the wheels

[SerializeField] GameObject centerOfMass;

void Start() {

playerRb.centerOfMass = centerOfMass.transform.position;

}

Step 3: Add a speedometer display
Now that we have our vehicle in a semi-drivable state, let’s display the speed on the User Interface.

1. Add a new TextMeshPro - Text object for your “Speedometer Text”
2. Import the TMPro library, then create and assign new create a

new TextMeshProUGUI variable for your speedometerText
3. Create a new float variables for your speed
4. In Update(), calculate the speed in mph or kph then display those

values on the UI

- Warning: Will be going
fast through adding
the text, since we did
this in prototype 5

- New Concept:
RoundToInt

using TMPro;

[SerializeField] TextMeshProUGUI speedometerText;

[SerializeField] float speed;

private void Update() {

speed = Mathf.Round(playerRb.velocity.magnitude * 2.237f); // 3.6 for kph

speedometerText.SetText("Speed: " + speed + "mph");

}

© Unity 2021 Create with Code - Unit 6



8

Step 4: Add an RPM display
One other cool feature that a lot of car simulators have is a display of the RPM (Revolutions per Minute)
- the tricky part is figuring out how to calculate it.

1. Create a new “RPM Text” object, then create and
assign a new rpmText variable for it

2. In Update(), calculate the the RPMs using the
Modulus/Remainder operator (%), then display that
value on the UI

- New Concept: Modulus / Remainder
(%) operator

[SerializeField] TextMeshProUGUI rpmText;

[SerializeField] float rpm;

private void Update() {

rpm = Mathf.Round((speed % 30)*40);

rpmText.SetText("RPM: " + rpm);

}

© Unity 2021 Create with Code - Unit 6



9

Step 5: Prevent driving in mid-air
Now that we have a mostly functional vehicle, there’s one other big bug we should try to fix: the car can
still accelerate/decelerate, turn, and increase in speed/rpm in mid-air!

1. Declare a new List of WheelColliders named allWheels (or
frontWheels/backWheels), then assign each of your wheels
to that list in the inspector

2. Declare a new int wheelsOnGround
3. Write a bool IsOnGround() method that returns true if all

wheels are on the ground and false if not
4. Wrap the acceleration, turning, and speed/rpm functionality

in if-statements that check if the car is on the ground

- New Concept: looping
through lists

- New Concept: custom
methods with bool returns

- Tip: if you use frontWheels or
backWheels, make sure you
only drag in two wheels and
only test that
wheelsOnGround == 2

[SerializeField] List<WheelCollider> allWheels;

[SerializeField] int wheelsOnGround;

if (IsOnGround()) {[ACCELERATION], [ROTATION], [SPEED/RPM]}

bool IsOnGround () {

wheelsOnGround = 0;

foreach (WheelCollider wheel in allWheels) {

if (wheel.isGrounded) {

wheelsOnGround++;

}

}

if (wheelsOnGround == 4) {

return true;

} else {

return false;

}

}

Lesson Recap
New Concepts
and Skills

● Searching on Unity Answers, Forum, Scripting API
● Troubleshooting to resolve bugs
● Center of Mass, AddRelativeForce, RoundToInt
● Modulus/Remainder (%) operator
● Looping through lists
● Custom methods with bool return

© Unity 2021 Create with Code - Unit 6



10

6.3 Sharing your Projects

Steps:
Step 1: Install export Modules

Step 2: Build your game for Mac or Windows

Step 3: Build your game for WebGL

Example of project by end of lesson

Length: 30 minutes

Overview: In this lesson, you will learn how to build your projects so that they’re
playable outside of the Unity interface. First, you will install the necessary
export modules to be able to publish your projects. After that, you will build
your project as a standalone app to be played on Mac or PC computers.
Finally, you will export your project for WebGL and even upload it to a game
sharing site so that you can send it to your friends and family.

Project
Outcome:

Your project will be exported and playable as a standalone app on Mac/PC or
for embedding online.

Learning
Objectives:

By the end of this lesson, you will be able to:
- Add and manage export modules for your Unity installs so you can choose

which platforms to build for
- Build your projects for Mac or PC so they can be played as standalone apps
- Build your projects for WebGL so they can be uploaded and embedded

online and shared with a single URL

© Unity 2021 Create with Code - Unit 6



11

Step 1: Install export Modules
Before we can export our projects, we need to add the “Export Modules” that will allow us to export for
particular platforms.
1. Open Unity Hub and navigate to the Installs Tab
2. On the Unity version you’ve been using in the course,

select Add Modules.
3. Select WebGL Build Support, and either Mac or

Windows build support, then click Done and wait for
the installation to complete

- Tip - Mac and Windows will create
apps for your computer and WebGL
will allow you to publish online

- Tip - you should see little icons
appear when it is complete

- Tip - WebGL is nice because you
can more easily share it online and
it is platform-independent

© Unity 2021 Create with Code - Unit 6



12

Step 2: Build your game for Mac or Windows
Now that we have the export modules installed, we can put them to use and export one of our projects
1. Open the project you would like to build (could be a

prototype or your personal project)
2. In Unity, click File > Build Settings, then click Add

Open Scenes to add your scene
3. Click Player Settings and adjust any settings you

want, including making it “Windowed”, “Resizable”,
and whether or not you want to enable the “Display
Resolution Dialog”.
For more information, check out the documentation
on configuring player settings.

4. Click Build, name your project, and save it inside a
new folder inside your Create with Code folder called
“Builds”

5. Play your game to test it out, then if you want, rebuild
it with different settings

- Don’t worry - a prototype that’s not
fully playable will be problematic
when you share it because the user
will have to close and reopen it to
play it again, but that’s OK for now

- Tip - since it’s just a mini-game, it
might be better to use “Windowed”
- this also allows the player to more
easily exit since we don’t have a full
UI to do that

- Don’t worry - on Windows, you have
an .exe file and a Data folder - on
Mac, you just have a .app file

- Warning - it’s kind of hard to
distribute these as is because
most email clients are cautious of
executables like this

© Unity 2021 Create with Code - Unit 6

https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html
https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html


13

Step 3: Build your game for WebGL
Since it is pretty hard to distribute your games on Mac or Windows, it’s a good idea to make your
projects available online by building for WebGL.
1. Reopen the Build Settings menu, select WebGL,

then click Switch Platform.
Note: you will only be able to do this if you have
installed the WebGL Build Support export module

2. Click Build, then save in your “Builds” folder with “
- WebGL” in the name

3. Try clicking on index.html to run your project (you
may have to try opening with different browsers)

4. Right-click on your WebGL build folder and
Compress/Zip it into a .zip file

5. If you want, upload it to a game sharing site like
Unity Play or itch.io.

- Warning - it’s easy to forget to click
“Switch platform” and can be confusing

- Don’t worry - building for WebGL can
take a long time

- Warning - some browsers do not
support opening WebGL programs from
your computer

- Tip - If uploading your game to a site
like itch.io, make sure to choose
“HTML” format and to “Play in browser”

© Unity 2021 Create with Code - Unit 6

https://play.unity.com/
https://itch.io/


14

Lesson Recap
New Concepts
and Skills

● Installing export modules
● Building for Mac/PC
● Building for WebGL/HTML

© Unity 2021 Create with Code - Unit 6


