& unity

Bonus

Features 2
Solution Walkthrough

Easy - Vertical Player Movement 2
Medium - Aggressive Animals 7
Hard - Game User Interface 19

Expert - Animal Hunger Bar 27

Easy - Vertical Player Movement
1. Inthe Project window, navigate to the Scripts folder and double-click the PlayerController script to
open it.

E3 Project

Create ~

_F*'Lf}Favnrites Assets > Scripts

¥ 53 Assets
F 53 Course Libr
&3 Prefabs
& Scenes C# C# C# C# C#
== Bcripts
> G Packages
DestroyOutOfBou.. DetectCollisions MeowveFarward SpawnManager

2. By the variable declarations, add the following:

public float horizontalInput;
public float speed = 10.0f;
public float xRange = 10.0f;

public GameObject projectilePrefab;

public float zMin;
public float zMax;
public float verticalInput;

3. Inthe Update method, after transform.Translate, we will add the code to move the player forwards

horizontalInput = Input.GetAxis("Horizontal");
transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);

verticalInput = Input.GetAxis("Vertical");
transform.Translate(Vector3.forward * verticalInput * Time.deltaTime * speed);

4. Now that the player can move back and forth, we will need to limit the movement so that they don’t go
out of the screen. We can do that by adding the following before the horizontallnput variables value is
set.

if(transform.position.z < zMin)

{

transform.position = new Vector3(transform.position.x, transform.position.y,
zMin);

}

if(transform.position.z > zMax)

{

transform.position = new Vector3(transform.position.x, transform.position.y,
zMax) ;

}

The final Update method for the PlayerController script should look like this:

void Update()
{

if (transform.position.

{

X

< -xRange)

transform.position
transform.position.z);

}

new Vector3(-xRange, transform.position.y,

if (transform.position.

{

X

> XRange)

transform.position
transform.position.z);

}

new Vector3(xRange, transform.position.y,

if(transform.position.z < zMin)

{

transform.position = new Vector3(transform.position.x,
transform.position.y, zMin);

}

if(transform.position.z > zMax)

{

transform.position = new Vector3(transform.position.x,
transform.position.y, zMax);

}

horizontalInput = Input.GetAxis("Horizontal");
transform.Translate(Vector3.right * horizontalInput * Time.deltaTime * speed);

verticalInput = Input.GetAxis("Vertical");
transform.Translate(Vector3.forward * verticalInput * Time.deltaTime * speed);

if (Input.GetKeyDown(KeyCode.Space))
{

Instantiate(projectilePrefab, transform.position,
projectilePrefab.transform.rotation);

}

6. Save the script and head back into Unity. In the Hierarchy, select the Player GameObject. You will notice
that we have some new fields available on the Player Controller component.

¥ o4 ¥ Player Controller (Script) Q& = **
Script PlayerController @
Horizantal Input 0
Speed 10
¥ Range 10
Projectile Prefab \#Food_Pizza_01]
Z Min 4]
Z Max 0
Vertical Input 0

7. Change the values of the Z Min and Z Max properties to allow for the player to not leave the cameras
view. We chose the following values:

¥ 4 ¥ Player Controller (Script) @ 3 =
Script FlayerContraller @
Horizontal Input 0
Speed 10
» Range 10
Projectile Prefab Food Pizza 01 2]

Vertical Input 4]

8. Save the screen and press play. The player should now be able to move backwards and forwards, while
not being able to exit the camera's view.

Medium - Aggressive Animals

1. Navigate to the Scripts folder in the Project view and select the SpawnManager script. We will edit it to
allow animals to spawn on the sides. By the variable declarations, add the following new variables:

public float sideSpawnMinZ;
public float sideSpawnMaxZ;
public float sideSpawnX;

2. After the SpawnRandomAnimal method, create two new methods. We can use the contents of the
SpawnRandomAnimal method as a start for our methods. We would need to adjust the spawnPos to
better suit which side of the screen the animals will spawn. For the left side, we will need the negative
of the x position.

void SpawnLeftAnimal()
{

int animalIndex = Random.Range(©, animalPrefabs.Length);

Vector3 spawnPos = new Vector3(-sideSpawnX, ©, Random.Range(sideSpawnMinZ,
sideSpawnMaxZ));

Instantiate(animalPrefabs[animalIndex], spawnPos,
animalPrefabs[animalIndex].transform.rotation);

}

For the right side we would need the positive of the x position

void SpawnRightAnimal()
{

int animalIndex = Random.Range(©, animalPrefabs.Length);

Vector3 spawnPos = new Vector3(sideSpawnX, ©, Random.Range(sideSpawnMinZ,
sideSpawnMaxZ));

Instantiate(animalPrefabs[animalIndex], spawnPos,
animalPrefabs[animalIndex].transform.rotation);

}

3. Atthe moment, if we were to test this we would have an issue with the rotation of the animals. Thats
because we are currently using the rotation that is on the prefab. We can fix this by updating the
methods we just created to the following:

void SpawnLeftAnimal()
{

int animalIndex = Random.Range(®@, animalPrefabs.Length);
Vector3 spawnPos = new Vector3(-sideSpawnX, @, Random.Range(sideSpawnMinZz,

sideSpawnMaxZ));
Vector3 rotation = new Vector3(e, 90, 0);
Instantiate(animalPrefabs[animalIndex], spawnPos, Quaternion.Euler(rotation));

void SpawnRightAnimal()
{
int animalIndex = Random.Range(©, animalPrefabs.Length);
Vector3 spawnPos = new Vector3(sideSpawnX, ©, Random.Range(sideSpawnMinZ,
sideSpawnMaxZ));
Vector3 rotation = new Vector3(e, -90, 0);
Instantiate(animalPrefabs[animalIndex], spawnPos, Quaternion.Euler(rotation));

Click here to learn about Quaternion.Euler.
Save the script and head back to Unity.

The next script we will need to adjust is DestroyOutOfBounds. Open up the script and add a new
variable by the variable declarations.

private float topBound = 30;
private float lowerBound = -10;
private float sideBound = 30;

Next we need to update the Update method to look like this:

void Update()
{

// If an object goes past the players view in the game, remove that object
if (transform.position.z > topBound)

{
Destroy(gameObject);
} else if (transform.position.z < lowerBound)
{
Debug.Log("Game Over!");
Destroy(gameObject);
}
else if(transform.position.x > sideBound)
{
Debug.Log("Game Over!");
Destroy(gameObject);
}

else if(transform.position.x < -sideBound)

https://docs.unity3d.com/ScriptReference/Quaternion.Euler.html

Debug.Log("Game Over!");
Destroy(gameObject);

The code we added will make sure the animals are destroyed when they go out of view on the left and
right side of the screen. Save the script and head back to Unity.

Open up the DetectCollision script and update the OnTriggerEnter method to look like this:

private void OnTriggerEnter(Collider other)

{
if (other.CompareTag("Player"))
{
Debug.Log("Game Over");
Destroy(gameObject);
}
else
{
Destroy(gameObject);
Destroy(other.gameObject);
}
}

This will make sure that when the animal collides with the player, Game Over will be printed to the
console.

The final bit of scripting we will need to do, is to adjust the PlayerController script. The reason behind
this is, we need to add a collider to the player to check for a collision between them and an Animal. The
issue with adding a collider is that it will make the food prefab collide with the player when they spawn
it, resulting in both being destroyed. We can fix this by having a separate spawn location as a transform
we can adjust in the editor. Below the variable declarations add the following variable:

public Transform projectileSpawnPoint;

In the Update method, we need to update the way the food is spawned. The updated code looks like
this:

Instantiate(projectilePrefab, projectileSpawnPoint.position,
projectilePrefab.transform.rotation);

Save the script and return to Unity.

Next we need to adjust the Player GameObiject. In the Hierarchy, right-click on the Player and select
Create Empty.

i= Hierarchy i Seer
| Create T| (oAl B! Shaded
v Q Prototype 2* =

L/ Main Camera
| Directional Light

b | Environment

> L Hip Copy

L SF Paste
(JSF
LSk Rename
P SE Duplicate
L./ Spaw
Delete

Open Prefab Asset

Select Prefab Asset
Unpack Prefab

Unpack Prefab Completely

3D Object >
2D Object >

10. Rename the new GameObject to FoodSpawnPosition and adjust the position to be slightly in front of the
Player.

8 Inspector

J W NFoodSpawnPosition [] static =
Tag | Untagged Layer | Default 3

v A Tra nsform [B,

T

Rotation
Scale x|1 |‘~r|1 |2|1 |

11. Back on the Player GameObject, we now need to assign the FoodSpawnPosition to the Projectile
Spawn Point on the Player Controller component.

12.

& Inspector

¥ Player |] static =
Tag | Untagged ¢ | Layer | Default 3]
Prefab | Cipen | Select | [Cwerrides -]
¥ .~ Transform & 5 %
Position X0 'Y 0 |2 0 |
Rotation X0 Y0 ‘2o |
Scale X1 [¥ |1 | 2|1 |
P== [« Animator il < 8
¥ o3 ¥ Player Controller (Script) @ = #
Script « PlayerCaontroller @
Horizontal Input 0 |
Speed 10 |
¥ Range |15 |
Projectile Prefab |ﬁFuud_Pizza_Ul | @
Z Min [-1.5 |
Z Max 115.5 |
Wertical Input]

Projectile Spawn Point | A FoodSpawnPosition (Transform) @

We also need to add a Collider to our Player. In the Inspector, select Add Component > Physics > Box
Collider. Adjust the collider size and center to better suit the player.

[© nspector [as=
W [Player | O] static *
Tag|Untagged ¢ Layer [Defauk ¢
Prefab | ©Open | Select | | Owerrides -

Cmpoanegn

Collider

13.

8 Inspector

¥ Player | [static «
rag i

Prefab [Cpen | Select] [Dv!rrid!s
¥ .~ Transform Ll =
Position X 0 ‘Yo 20
Rotation X 0 ‘Yo 20]
Scale ®[1 |1 lz]1]
b L5 ¥ Animator @ = %
¥ o4 ¥ Player Controller (Script] il -
Script | « PlayerController |]
Horizontal Input o]
Speed 10]
¥ Range [15]
Projectile Prefab [ﬁFund_Pizza_Ul] @
Z Min [-15]
Z Max [15.5]
Wertical Input o]
Projectile Spawn Pui[AFuudSpawnPusitiun] @
v .4 ¥ Box Collider [= =

Is Trigger

Material

Add Component

Next we need to add a Rigidbody to the Player GameObject. This is because if neither the Player nor
the Animal has a Rigidbody, the collision events will not be called. To do this, click Add Component >
Physics > Rigidbody

© nspector [
W Player | [static ~
Tag|Player ¢ layer |Defau 3]
Prefab | Open | Select | |Overrides -]

N
ETT

R q idbod ¥

13. The last thing we need to do on the Player is to change the Tag to “Player”

| @ Inspector [EaE=

W Player | [] static
Tag | Untagged $| Layer | Default s
Prefab .- Untagged | overrides - |
YA T Respawn 3 =
Positiol . |z 0 |

i Finish
Rotatio _ a0 |
Scale EditorOnly | z[1 |
> 22 A A MainCamera @ 3 &
v o M PI Player @l 5 %,
Script GameController Er o
Haorizont |
Speed Add Tag... |

14. Next, select the SpawnManager in the Hierarchy. We will need to set up the new variables on the Spawn
Manager component.

¥ = [+ Spawn Manager (Script)

Script « SpawnManager 2]
b Animal Prefabs

Side SpawnMinz 3 |

Side Spawn X

15. Save the scene and hit Play. Animals should now spawn from the edges. When they collide with you,
the console outputs “Game Over”.

Hard - Game User Interface

1. The first we will do is create a GameManager script that will handle the lives and score variables.
Navigate to the Scripts folder and right-click > Create > C# script. Name the script GameManager.

3 Project | El Consale

| Create =

b-‘\‘:}Favnrites

T%Assets
¥ &3 Course Libr
53 Source_
b 55 Animals
&5 Food
% Humans
&5 Materials
&3 Prefabs
% Scenes
== Scripts
k55 Packages

Ass

Show in Explorer
Open

Delete

Rename

Copy Path

Open Scene Additive

Import Mew Asset...
Import Package

Export Package...

Find References In Scene

Select Dependencies

Refresh
Reimport

Reimport All

Extract From Prefab

Run APl Updater...

Update UIElernents Schema

Open C# Project

Alt+Ctrl+C

Ctrl+F

Folder

Shader

Testing

Playables

Assemnbly Definition
TextMeshPro

Scene

Prefab Variant
Audio Micer

Material

Lens Flare

Render Texture
Lightmap Parameters

Custorn Render Texture

Sprite Atlas

Sprites

Tile

Ammator Contraoller
Animation

Animator Override Controller

Avatar Mask
Timeline

Physic Material
Physics Material 2D

GLUI Skin
Custom Font

Open up the script. The first thing we will do is create the variables for score and lives. Below the class
definition add:

private int score
private int lives

9;
3;

After the Update method, we will need to create two methods. The first will be called AddLives, and the
second will be AddScore. The methods will take in a value and update the relevant variables, printing
out to the console when they are updated.

public void AddLives(int value)

{
lives += value;
if (lives <= 9)
{
Debug.Log("Game Over");
lives = 0;
}
Debug.Log("Lives = " + lives);
}
public void AddScore(int value)
{
score += value;
Debug.Log("Score = " + score);
}

Now we will need to call these methods in other scripts. Open up the DestroyOutOfBounds script. We
will first need to create a reference to our GameManager script. Add a new variable for the
GameManager.

private float topBound = 30;
private float lowerBound = -10;
private float sideBound = 30;
private GameManager gameManager;

In the Start method, we will setup the reference to the new variable.

void Start()
{

gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();

Inside the Update method, we will need to remove all instances of 'Debug.Log(“Game Over”);". and
instead add in ‘gameManager.AddLives(-1);".

void Update()

{
// If an object goes past the players view in the game, remove that object
if (transform.position.z > topBound)
{
Destroy(gameObject);
}
else if (transform.position.z < lowerBound)
{

:) E
gameManager.AddLives(-1);
Destroy(gameObject);

}
else if (transform.position.x > sideBound)
{

:) E
gameManager.AddLives(-1);
Destroy(gameObject);

}
else if(transform.position.x < -sideBound)
{

:) E
gameManager.AddLives(-1);
Destroy(gameObject);

}
}

The next script we will need to update is DetectCollisions.cs. Open up the script, add in a
GameManager variable and set it up like we did in DestroyOutOfBounds.cs.

private GameManager gameManager;

// Start is called before the first frame update
void Start()

{

gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();

Next we will need to update the OnTriggerEnter method. The updated OnTriggerEnter method looks
like this:

private void OnTriggerEnter(Collider other)

{
if (other.CompareTag("Player"))
{
gameManager.AddLives(-1);
Destroy(gameObject);
}
else if (other.CompareTag("Animal"))
{
gameManager.AddScore(5);
Destroy(gameObject);
Destroy(other.gameObject);
}
¥

9. Save all the scripts and head back to Unity. In the Hierarchy, right-click and select Create Empty.
Rename the empty GameObject to GameManager.

= Hierarchy | =
Create ~ | (arAll
¥ ﬁ';l Prototype 2
: Main Camera
I Directional Light
| Environment
b L Player >
. SpawnManager

Copy
Paste

Rename
Duplicate
Delete

Create Empty

3D Object >
2D Object >

10. Inthe Inspector for the GameManager GameObject, Click Add Component and search for
GameManager.

8 Inspector

¥ GameManager | [] static =
- Tag [Untagged t] Layer [Default t]
¥ .~ Transform o
Position X0 ¥ 0 [Z]o |
Rotation X0 Al [Z]o |
Scale 1 1 [Zz]1 |
&dd Component
‘0 GameManage @)
Search
Mew script >

11. Save the scene. In the Project window, navigate to the Prefabs folder. Select one of the animals, then
select the Tag property and click Add Tag... .

W Animal Doe 02 [] statie =
Layer |Default ‘]
¥ .~ Tt~ Untagged G 5 %
Position Respawn [Z[|12 |
Rotation . [0 |Z]o |
Finish
Scale 0 |Z 10 |
P EditorOnl
» 22 W Al ey @ 5
¥ o M MainCamera @ 5 %
Script Player o
Speed GameController |
¥ o [Dy G 5 %
. Add Tag...) =
Script ounds]
¥ id ¥ Box Collider 5 %

12. The Inspector will now show the Tags & Layers window. Under the tags option, click the + and write in
Animal. Then click Save.

{E} Tags & Layers

¥ Tags

| List is Empty

Mew Tag Mame {Animall

Save

13. Now that we have the tag, assign it to all of your animals. You can do this quick by selecting all the

animal prefabs and changing their tag to Animal.

i@ Project 8 Inspector
| create | @ 3 Prefab Assets @ =
PﬁFavorite: Assets » Prefabs
¥ 55 Assets
¥ & Course Lib [Open Prefab]
» &3 _Source_
» &5 Animals | (1 o - - iti
! pen Prefab for full editing support.
& Food -
&5 Humans
o= : |_Doe_02 a_| -
&5 Materials Callul Root in Prefab Asset
G3 Scenes v o — || static +
&5 Scripts T ag [Untagged : BLayer | Default =
53 Packages
= g "y, YA Ti¥ Untagged TS
Position Respawn |z[12 |
Rotation .. |z/o |
Food_Pizza_01 Scale Finish |2|_ |
— EditorOnl
rEEA oy TR
¥ oo M MainCamera @ 5 %
Script Player o
Speed GameController |
Voo | vl] Z o
Script @
—=— Add Tag...
v i ¥ Be 29 @ = %

14. Save the project and press Play. You should now see a score in the console every time you feed an
Animal. The current amount of lives will also be displayed when an animal gets passed, or collides with,

the player.

Expert - Animal Hunger Bar

1. We will start out by creating the Ul for the hunger bar. Navigate to the Prefabs folder and drag one of
the animals into the Hierarchy

Scene
Shaded

= Hierarchy
| Create T| (e All 3
v Q Prototype 2* =
L' Main Camera
| Directional Light
B | Environment
b i Player >
L SpawnManager
L GameManager

W Animal_Moose_01

3 Project
| Create T|
P{,\}’Fawnritei Assets » Prefabs

Tﬁﬁ!sets
¥ 5 Course Libr
b & Source_
b 55 Animals
&5 Food
ﬁ Hurmans
ﬁ Materials Animal_Doe_02
ﬁ Scenes
55 Scripts
&5 Sprites
b il Packages

Animal_Fex_01 Animal_Moose_01 Food_Pizza_01

2. Right-click in the Hierarchy and select Ul > Slider.

= Hierarchy

v Q Prototype 2*

Text
Text - TextMeshPro
Image
Raw Image
Button
Button - TextMeshPro
il&
Scrollbar
Nrondown

3. Onthe Canvas that was just created, rename the GameObject to SliderCanvas. Find the Canvas
component and change the Render Mode to World Space.

@ Inspector | =
W Bslidercanvas [static =

Tag | Untagged | Layer | UI t |
¥.- Rect Transform L] 3 %,
Pos X Pos 7 Pos £
1535 301 o |
Width Height
1070 [s0z |
b Anchors
Pivot X[0.5 Y 0.5 |
Rotation X|0 Y0 |Z|o |
Scale X|1 [¥ |1 | Z[1 |
v| |¥ canvas

Render Mode World Space

Event Camera Screen Space - Overlay

‘ A World Space | Screen Space - Camera

not register UI

Sorting Layer
order in Layer 0 |
Additional Shader Char| Mathing t]

If you zoom out of the scene view, you will see that the slider is currently massive. We need to adjust
the size of the canvas so that it will be viewable. The settings we used for the Rect Transform of the
SliderCanvas can be seen below:

8 Inspector =
[+ |SliderCanvas [] static =
Tag | Untagged | Layer | UI $ |

ng Rect Trag

b Anchors
Pivot

Rotation Y0 20

Scale #®.0.03 Y 0.03 £10.03

Next we will adjust the Slider. In the Hierarchy, click the arrow to show the child GameObjects of the
Slider.

vl ' EIiderCanvas

L /Background
B L Fill Area
k| 'Handle Slide Area

We won't need the Handle, so delete that GameObject. Select the Background GameObject, and adjust
the Color of the Image component.

‘i= Hierarchy

| Create | (oAl ¥ Background [] static =
L Q Prototype 2* = - -
[FMain Camera Tag | Untagged +| Layer | I 4|
|| Directional Light ng Rect Transform o
b . JEnvironment stretch Left Top Pos 2
b b Player > e o |lo o |
L SpawnManager i E Right Bottorm
| GameManager S o llo |
|/ EventSystem k- Anchors
¥ iy Animal_Moose_01 > pivet ®[0.5 |v[o5 |
SM_Doe_02
SM_Doe_03 Rotation bl | o |z[o |
SM_Moose_Female_02 Scale %[1 [[z [zl |
SM_Moose_Female_03 TECE Canvas Renderer G = %
',/ SM_Moose_Male_01 Cull Transparent Me:|_|
SM_Moose_Male_ 02
SM_Moose_Male_03 ¥ "a ¥ Image (Script) @ 5
o) E E O

SM_Stag_01
SM_Stag_02
SM_Stag_03
¥ . SliderCanvas
v ide
® Background
¥ L Fll Area
L Fill

== | @ Inspector
-\.

= 'E' Colar

Material None [(Materia

Raycast Target [
Image Type | Sliced t]
Fill Center [
Default UI Material &,
> Shader | UI/Default .

[Add Component

/

s

.
o [
.

Hexadecimal

¥ Swatches =

On the Fill Area GameObject, we will need to adjust the Rect Transform component. Change the Right

value to 5.

| © Inspector | Ep—
[« Fill Area [] static =
Tag | Untagged #| Layer | UI t |
¥.© Rect Transform Ll = %,
stretch Left Top Pos £
c s 0 IC |
IS .
: 5 0 |
b Anchors
Pivat X0.5 Y 0.5 |
Rotation X0 Y0 |
Scale X|1 [¥ |1 |

8. On the Fill GameObject, we will adjust the Color of the Image component. We set ours to green.

8 Inspector = v;. Color n
[« |Fill [] Static =
Tag | Untagged 4| Layer | UI ¢ | / -
v21 Rect Transform il e 8
|S-:-me walues driven by Slider. |
stretch Left Taop Pos 2
3 -5 o IC |
o E Right Bottorn
5
; 5 I |
b Anchors
Pivot %05 Y 0.5 |
Rotation X0 Y0 |Z[0 |
Scale ¥[1 [¥|1 | 2| |
¥(@ canvas Renderer 3 ' #,
Cull Transparent Me:[_|
_ = =1
¥ "y ¥ Image (Script) . [& %,
0 = Tmaae a = (0]
Al rL [la1 |
e TG °| c —
Raycast Target [+
Image Type | sliced ™ B | |32 |
Fill Center [Al 11255 |
Default UL Material [% Hexadecimal L
> Shader | UI/Default . ¥ Swatches =
| [=]
r h |

9. The next thing we need to do for the Slider, is adjust the Slider component. On the Slider component,
check the Whole Numbers property.

10.

| © tnspector
4 [[slider | [] Static =
Tag |Untagged #|layer (UL]

On Value Changed (Sinale)

List is Empty

Drag the SliderCanvas from the Hierarchy into the Prefabs folder in the Project View

11.

“= Hierarchy H 5cene
| Create 'l (e All), | Shaded
‘FQ Prototype 2% =

L 'Main Camera
| Directional Light
b L Environment
> g Player >
| SpawnManager
| GameManager
OEuntE'.rltnm

arimal Moose [

b by SliderCanvas >

3 Project
| Create 'l
h‘ﬂfFavurites Assets » Prefabs

Tﬁﬁs!ets
b 53 Course Libr
== prefabs
ﬁScenes
&5 Scripts
53 Sprites
b 55 Packages

Animal_Doe_0Z Animal_Fox_01 Animal_Moose_01 Food_Pizza_01

Add the SliderCanvas prefab to the animal you have within the scene.

¥ iy Animal_Moose_01 >

. SM_Doe_02

A SM_Doe_03

_5M_Moose_Female_0Z
EM_Moose_Female_03

L/ EM_Moose_Male_01

EM_Moose_Male_0Z

EM_Moose_Male_03

| SM_Stag_01

_|SM_Stag_02

> SliderCanvas

12. Navigate to the Scripts folder, right-click and select Create > C# Script. Name the new script

13.

14.

AnimalHunger.

P TR W e e
o

P W Player
L SpawnManagq
L GameManage

Show in Explorer

Folder

L/ EventSystem COpen Shader ¥
B L Animal_Moaos: Delete :
= >
b iy SliderCanvas Rename Testing
Playables *
Copy Path Al Ctrl+C Assemnbly Definition
Open Scene Additive TextMeshPro »
Import New Asset... Scene

Import Package
Export Package...

Prefab Vanant

Audio Mixer
Find References In Scene
Select Dependencies Material
_ Lens Flare
83 Project [l Cons Refresh Ctrl+R
—— Render Texture
> ./ Favorites K ESpas Lightmap Parameters
= Reirmport All Custom Render Texture
¥ 55 Assets
G Course Libr Extract From Prefab Sprite Atlas
(&5 Prefabs -
&8 Scenes Run APl Updater... L= ’
= Scripts Tile
&5 Sprites Update UlElements Schema
» B Fackages Animator Controller

Open CF Project

Animation

Animator Override Controller

Open up the new script. The first thing we need to do is include another namespace. At the top of the
script, update the ‘using’ section to look like this:

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

Next, let's set up the variables. Before the Start method, add the following:

public Slider hungerSlider;
public int amountToBeFed;

private int currentFedAmount = 0;

15.

16.

17.

private GameManager gameManager;

In the Start method, we will set up the maxValue of the slider, as well as the GameManager variable.
The updated Start method should look like this:

void Start()

{
hungerSlider.maxValue = amountToBeFed;
hungerSlider.value = 9;
hungerSlider.fillRect.gameObject.SetActive(false);
gameManager = GameObject.Find("GameManager").GetComponent<GameManager>();
}

Below the Update method, we will create a new method that will be called to update the current fed
amount of the animal.

public void FeedAnimal(int amount)

{
currentFedAmount += amount;
hungerSlider.fillRect.gameObject.SetActive(true);
hungerSlider.value = currentFedAmount;

if(currentFedAmount >= amountToBeFed)

{

gameManager .AddScore(amountToBeFed);
Destroy(gameObject, 0.1f);

}
Save the script.

Open up the DetectCollisions script. We now need to adjust the collision when the food hits the animal.
Update the OnTriggerEnter method to look like this:

private void OnTriggerEnter(Collider other)
{
//Check if the other tag was the Player, if it was remove a life
if (other.CompareTag("Player"))
{
gameManager.AddLives(-1);
Destroy(gameObject);
}
//Check if the other tag was an Animal, if so add points to the score
else if (other.CompareTag("Animal"))

other.GetComponent<AnimalHunger>().FeedAnimal(1);
Bestroyfother—gametbject)rs
Destroy(gameObject);

}
Save the script and head back to Unity.

18. Inthe Hierarchy, select the Animal prefab that you placed earlier in the scene. In the Inspector, click Add
Component and search for the AnimalHunger script.

@ Inspector | =
[« |Animal_Moose_01 [] Static =

Tag | Animal | Layer | Default ¢ |
Prefab | Cpen | Select | | owverrides - |

F .~ Transform [5 #
kU5 ¥ Animator il
b o [Mowe Forward (Script) [= &
b o [+ Destroy Out Of Bounds (Script) S
b iy ¥ Box Collider -
b o [+ Detect Collisions (Script) [&' %,

add Component

‘2, Animal| @)

Search

H Animal Hunger

New script >

19. Drag the Slider that is a child of the animal, into the Hunger Slider parameter. Adjust the amount to be
fed based on the animal being selected. For the Moose we used the value of 3.

20.

“= Hierarch 8 Inspector

o [Animal_Moose 01 [[]sStatic ~
Tag M Layer M

Let's apply the changes to the prefab. In the Inspector, click Overrides and then Apply All.

8 Inspectar

[+ Animal_Moose_01 | [] static =
Tag M Layer
Brefab o Owerrides T

Overrides to W Animal_Moose_01
in €Scene

21018 alpgieieipi=ip

21. Now repeat the process for each of the other animal prefabs. Ensure they have the SliderCanvas within
their hierarchy and the Animal Hunger script applied to the root. The amount to be fed value we used
for the other animals are:

- Fox=1
- Doe=2

P

S T E—
‘IQ Prototype 2% o L static
Tag M Layer

Apply all overrides to Prefab source
‘Animal_Feox_01",

" = Hierarchy 8 Inspector

¥ [Animal_Doe_02 | [] static =

Tag [Animal] Layer

Prefab

After you have set up the prefabs, remember to apply the changes and delete them from the scene.

22. Save the scene and press play. The animals should spawn with a black bar, the bar will go green the
more you fire food at them.

