
Bonus
Features 3
Solution Walkthrough

Easy - Randomize Obstacles 2

Medium - Double Jump! 15

Hard - Dash Ability 17

Expert - Game Start Animation 26



Easy - Randomize Obstacles
1. Navigate to the Scripts folder and open up the script SpawnManager.cs. We will need to update the

obstaclePrefab variable to be an array and add in a new variable for spawning a random obstacle.

public GameObject[] obstaclePrefabs;

private Vector3 spawnPos = new Vector3(25, 0, 0);

private float startDelay = 2;

private float repeatRate = 2;

private PlayerController playerControllerScript;

private int randomObstacle;

2. We now need to update the SpawnObstacle method. First we will need to set the randomObstacle
number, then spawn the object from that position in the array. The updated method will look like this:

void SpawnObstacle ()

{

if(playerControllerScript.gameOver == false)

{

randomObstacle = Random.Range(0, obstaclePrefabs.Length);

Instantiate(obstaclePrefabs[randomObstacle], spawnPos,

obstaclePrefabs[randomObstacle].transform.rotation);

}

}

Save the script and head back to Unity.

3. We now need to set up some more obstacle prefabs. First, create an empty GameObject by
right-clicking in the Hierarchy and selecting Create Empty. Rename the new GameObject to
Obstacle_Crate.



4. On the ObstacleCrate GameObject, add a Box Collider. We will adjust the size of this later. In the
Inspector, click Add Component > Physics > Box Collider.

5. Next add a Rigidbody. In the Inspector, click Add Component > Physics > Rigidbody.



6. The last component we need on this GameObject, is the MoveLeft script. In the Inspector, click Add
Component and search for MoveLeft, click on it to add it to the GameObject.



7. Change the Tag of the ObstacleCrate to Obstacle. This can be done by clicking on the Untagged
dropdown and selecting Obstacle.



8. Now that we have the basis for our new Obstacles. Duplicate ObstacleCrate twice, rename one to
ObstacleDoubleCrate and the other to ObstacleBarrel. You can duplicate a GameObject by either
right-clicking on it and selecting Duplicate or selecting the GameObject and pressing Ctrl + D (PC) or
Cmd + D (Mac).

9. In the Project view, navigate to the Obstacles folder (Course Library > Obstacles). Drag Crate_01 into
ObstacleCrate in the Hierarchy. In the ObstacleDoubleCrate GameObject, drag in Crate_01 twice. In the
ObstacleBarrel GameObject drag in either of the Barrels, we chose Barrel_02.



10. On the ObstacleCrate GameObject, Adjust the Size and Center of the BoxCollider so that it fits the crate.





11. On the ObstacleDoubleCrate GameObject, adjust the crates so that one is stacked on the other. Then
adjust the BoxCollider to fit around both crates.





12. On the ObstacleBarrel GameObject, adjust the BoxCollider Size and Center to fit the barrel.



13. Navigate to the Prefabs folder in the Project view and drag the 3 new Obstacles from the Hierarchy to
the Project view. Then delete the Obstacles from the Hierarchy.



14. Select the SpawnManager in the Hierarchy. In the Inspector, add in the obstacles from the Prefabs
folder to the Obstacle Prefabs array on the Spawn Manager component.

15. Save the scene and press play. The new obstacles will now spawn





Medium - Double Jump!
1. Navigate to the scripts folder and open up the PlayerController.cs file. By the variable declarations, add

the following variables.

public bool doubleJumpUsed = false;

public float doubleJumpForce;

2. In the Update method, we first need to set the doubleJumpUsed boolean to false when the player does
their first jump. We then check if the player has pressed the space key, doubleJump has not been used,
and the player is in the air. If all of those checks pass, we will then add another force to the player like
we did in the previous if statement and use the animation.Play() function to reset the jumping
animation to the first frame. The updated Update method will look like this:

void Update()
{

if (Input.GetKeyDown(KeyCode.Space) && isOnGround && !gameOver)
{

playerRb.AddForce(Vector3.up * jumpForce, ForceMode.Impulse);
isOnGround = false;
playerAnim.SetTrigger("Jump_trig");
dirtParticle.Stop();
playerAudio.PlayOneShot(jumpSound, 1.0f);

doubleJumpUsed = false;
}
else if(Input.GetKeyDown(KeyCode.Space) && !isOnGround && !doubleJumpUsed)
{

doubleJumpUsed = true;
playerRb.AddForce(Vector3.up * doubleJumpForce, ForceMode.Impulse);
playerAnim.Play("Running_Jump", 3, 0f);
playerAudio.PlayOneShot(jumpSound, 1.0f);

}
}

3. Save the script and head back to Unity. In the Hierarchy, select the Player GameObject. In the Inspector
for the Player, adjust the Double Jump Force value on the Player Controller (script) component. Try
playtesting with different values to find one that you like.



4. Save the scene and test the game. You can now press the spacebar twice to get a higher jump.



Hard - Dash Ability
1. Navigate to the Scripts folder and open up the PlayerController.cs file. Below the variable declarations,

add a new variable.

public bool doubleSpeed = false;

2. Next we will set this boolean within the Update method. After the jump code, add the following:

if(Input.GetKey(KeyCode.LeftShift))

{

doubleSpeed = true;

playerAnim.SetFloat("Speed_Multiplier", 2.0f);

}

else if (doubleSpeed)

{

doubleSpeed = false;

playerAnim.SetFloat("Speed_Multiplier", 1.0f);

}

This piece of code will check if the user has pressed down the left shift. If they have, it will set the
doubleSpeed boolean to true, otherwise the boolean will be false. We also set the animator parameter
Speed_Multiplier according to if doubleSpeed is true or not. This parameter will be set up a bit later on.

Save the script and head back to Unity.

3. Open up the MoveLeft.cs script. We will now tell the obstacles if the player is moving at double speed.
We already have a variable for the player so all we need to do is to check the boolean we just created.
Adjust the Update method to look like this.

void Update()

{

if (playerControllerScript.gameOver == false)

{

if (playerControllerScript.doubleSpeed)

{

transform.Translate(Vector3.left * Time.deltaTime * (speed * 2));

}

else

{

transform.Translate(Vector3.left * Time.deltaTime * speed);

}

}



if (transform.position.x < leftBound && gameObject.CompareTag("Obstacle"))

{

Destroy(gameObject);

}

}

Save the script and head back to Unity.

4. Create a new script in the Scripts folder by either selecting Assets > Create > C# Script or right-clicking
in the project view and selecting Create > C# script. Name the new script GameManager. Double-click
the new script to open it.

5. Inside the class declaration, add two new variables. The first will store our score value, the second will
be used to reference our player.

public float score;

private PlayerController playerControllerScript;

6. Next, inside the Start method, set the reference for the player and ensure the value of score is 0.

void Start()

{

playerControllerScript =

GameObject.Find("Player").GetComponent<PlayerController>();

score = 0;

}



7. The last thing we need to do in this script, is set up the Update method. We want to check if the game
is over, if it isn’t we will add to the score based on how fast the player is moving. We will also output to
the console the current score.

void Update()

{

if(!playerControllerScript.gameOver)

{

if(playerControllerScript.doubleSpeed)

{

score += 2;

}

else

{

score++;

}

Debug.Log("Score: " + score);

}

}

Save the script and head back to Unity.

8. We now need to adjust the Player’s Animator. Go to Window > Animation > Animator to open the
animator window.



9. Once the window is open, dock it somewhere easy to access. Then select the player in the hierarchy



10. Inside the Animator window, select the parameters button. Next select the + button and select Float.
Name the new parameter Speed_Multiplier. Set it’s default value to 1.0.



11. Next select the Run_Static state in the Animator window. In the Inspector, by the Multiplier parameter,
check the Parameter checkbox.



12. Once checked, you can then select the Speed_Multiplier parameter from the dropdown list.

13. In the Hierarchy, create a new empty GameObject by either clicking Create > Create Empty or
right-clicking and selecting Create Empty. Name the new GameObject GameManager.



14. In the Inspector for the GameManager, click Add Component and search for GameManager, select the
GameManager script to add it to the GameObject.

15. Save the scene and press play. When you hold the shift key, the player will run faster and the objects
will appear quicker!





Expert - Game Start Animation
1. Navigate to the Scripts folder and open up the GameManager.cs script. By the variable declarations,

add the following variables:

public Transform startingPoint;

public float lerpSpeed;

2. Update the Start method to look like the following:

void Start()

{

playerControllerScript =

GameObject.Find("Player").GetComponent<PlayerController>();

score = 0;

playerControllerScript.gameOver = true;

StartCoroutine(PlayIntro());

}

3. Below the Update method, create a new method called PlayIntro. This new method will move the player
to the starting point.

IEnumerator PlayIntro()

{

Vector3 startPos = playerControllerScript.transform.position;

Vector3 endPos = startingPoint.position;

float journeyLength = Vector3.Distance(startPos, endPos);

float startTime = Time.time;

float distanceCovered = (Time.time - startTime) * lerpSpeed;

float fractionOfJourney = distanceCovered / journeyLength;

playerControllerScript.GetComponent<Animator>().SetFloat("Speed_Multiplier",

0.5f);

while (fractionOfJourney < 1)

{

distanceCovered = (Time.time - startTime) * lerpSpeed;

fractionOfJourney = distanceCovered / journeyLength;

playerControllerScript.transform.position = Vector3.Lerp(startPos, endPos,

fractionOfJourney);

yield return null;



}

playerControllerScript.GetComponent<Animator>().SetFloat("Speed_Multiplier",

1.0f);

playerControllerScript.gameOver = false;

}

Let’s break this method down. First we determine what the start and end positions are for our
movement. Next, we determine what the length of the journey is. After that, we determine the distance
we have covered so far, and what the fraction of the distance over the journey length is. We then do that
calculation within a while loop to move the player forwards.
We can adjust the value of the lerpSpeed variable to determine how fast the movement happens.

Within this method we are also adjusting the speed of the player’s animation using the Speed_Multiplier
variable we created earlier.

After the movement has been completed, we set the gameOver variable to false to allow the player to
move.

Save the script and head back to Unity.

4. In the Hierarchy, right-click and select Create Empty.



5. Select the new GameObject, rename it to StartPoint. Adjust the Position of the StartPoint to 0,0,0.

6. We will now set up the variables for the GameManager. In the Hierarchy, select the GameManager. Drag
the StartPoint from the Hierarchy into the Starting Point field. Adjust the Lerp Speed variable to be 5.

7. The last thing we need to do is adjust the players position. Select the Player in the Hierarchy. Adjust its
position to -5,0,0.

8. Save the scene and press Play. The player will now run in from the left before the game starts.




