
@jonmcelroy blog.jonmcelroy.com

GRAPHICS PROGRAMMER
Jon McElroy

DESIGNING A GAMEMANAGER

Swords and Shovels:
Game Managers, Loaders, and the
Game Loop

Presenter
Presentation Notes
In this clip, we're going to talk about the reasoning behind building a game manager, the kind of game managers someone could build, and also, lay the ground work for building our own game manager.

Games are a collection of
systems.

Presenter
Presentation Notes
A game is really just a collection of systems tracking player actions and updating to keep track of an experience. So, it's important when building a game to think about the systems being put in place how they will work together. What is the responsibility for a particular system and what should it know about or have access to.

Prototype

Full Game

Presenter
Presentation Notes
Because, as a game design grows from a prototype into a full game, all the different systems and parts will need to communicate in order to complete all of their tasks. There are a number of ways to ensure all of a games systems can work together.

Game Systems

Player

Inventory

Stats

Presenter
Presentation Notes
On a small scale, all of the different parts of a game could communicate directly with each other. Each system could hold it's own responsibilities and share or request information as necessary from other parts of a game.

Game Systems

Player

Inventory

Stats

Presenter
Presentation Notes
The problem with this style of direct communication is that as the number of systems grows, knowing who changes what, when it changes and who has the right to change a particular thing can get tangly.

Complicated systems are
hard to debug.

Presenter
Presentation Notes
These kinds of systems are hard to debug and as such don’t scale well to even moderate sized projects.

Game Systems

Player

Game
Manager

Presenter
Presentation Notes
To deal with this, a central location could be established to track data that is shared by many sources. Shared data could be things like, a players health, weather or not a player is currently controllable or the game is paused or what level the game is currently on. This central location could decide who can change that data or read that data and when they are allowed to do so. It could also dictate commands and keep track of the state of individual assets in a project. The nice thing about having everything in one location is that if something happens when it's not supposed to, a developer has a central area to begin looking.

A central location for data

Determines who can change what

Informs other systems of changes

Game
Manager

Presenter
Presentation Notes
This is the basis of a GameManager. A single system for data or rules that many parts of a game might need access to. And there are a lot of different kinds of GameManagers. A GameManager could be the master of a game, enforcing behavior from other systems or a GameManager could be a guide relaying information that other systems can choose to respond to in their own time. Both methods have their own merits and you'll need to decide which one to use based on the design of your game. Often times a GameManager may do both, strongly enforcing some things and relaying loose messages about other things.

For Swords and Shovels, our GameManager is going to work as a partner with our other systems both performing a little bit of rule management and a little bit of informing to other systems.

So, now that we've talked about why you would want a GameManager and what a GameManager could do, let's talk about the things that our particular GameManager will need to do.

Persistent Systems

Presenter
Presentation Notes
In this clip we'll discuss storing assets persistently in Unity and the different ways that Unity handles grouping data.

Game Manager

Game ManagerA B

Presenter
Presentation Notes
If a Game Manager is a central location for high level behaviors, decisions and a game's data, we'll need to store it in a place where all the supporting systems of a game have the ability to reach it.

Globally accessible
for the life of the game

Presenter
Presentation Notes
We can say that a Game Manager should be globally accessible and persist throughout the life of a game. That means even if we load a new level or go to the main menu, the GameManager should still be available to the game code.

Scene Prefab

Unity Containers

Presenter
Presentation Notes
Unity groups data in a couple of different ways. Inside of a Unity project, there are prefabs and there are scenes. Both represent collections of assets such as meshes and textures and they define how these assets are connected with built-in Unity scripts and scripts made by a developer for a particular game.

For example, a prefab could be used to specify a player character or an audio control system. The assets could also be stored directly in a scene with the expectation that a scene would prepare a player character or audio control system at the time that it loads.

Scene

Prefab

Unity Containers

Prefab

Presenter
Presentation Notes
Even though both scenes and prefabs can store the same data, the general paradigm that Unity uses is that scenes define large groups of assets, such as levels or totally different sections of a game, and prefabs will define smaller sets of assets, such as a type of enemy or vehicle or a piece of user interface.

Because of this Unity provides built in methods for scene loading and unloading. But as scenes load and unload, the game objects and prefabs associated with a particular scene will also be unloaded. For persistent data and systems such as a Game Manager, we'll want to make sure that they live outside of the scope of these loading systems. Additionally, it’s likely our GameManager would want to know when these loads are happening.

Game Start
Persistent

Scene

Presenter
Presentation Notes
So, to do this, a common technique is to create a scene that only contains managers and persistent data

Load Level 1
Persistent

Scene Level 1

Presenter
Presentation Notes
And to load and unload other scenes additively.

Unload Level 1
Persistent

Scene

Presenter
Presentation Notes
So things that are globally accessible and need to be around for every part of game can exist in this special scene that never gets unloaded until the game is shutdown completely.

Load Level 2
Persistent

Scene Level 1

Presenter
Presentation Notes
This is the technique we will take with our GameManager. We'll assume that eventually Swords and Shovels will have multiple levels that will contain their own geometry and art. And that as a player progresses through the game, we'll want to load and unload different levels. Those levels may contain systems and prefabs such as a player controller but globally we'll want to be able to store things in a place that persists through out all of these levels.

Eventually, we may have other managers and systems that need to persist in this way but for now let's decide what our specific requirements will be for our game manager.

Preparing to Requirements

Presenter
Presentation Notes
In this clip we're going to talk about the requirements for our Game Manager and block out the basics of what we expect our manager to do.

It’s okay to not have
everything designed.

Presenter
Presentation Notes
It is okay if we don't know every single thing our GameManager should do at this stage of development because a game is an organic thing that changes as it’s built. It’s rare to design a game on and then build it and not have to make any changes and the functions of a games systems are the same way. Because the systems are expected to change, we want to try and support growth as best we can without over designing so we’ll start with basics that we know we’ll definitely want.

Can cleanup game systemsKnows the current state of the
game

Can create other global
managers

Tracks what level is being
played

Requirements

Presenter
Presentation Notes
We'll require that our GameManager should know what level of the game we are currently on and have methods to load and unload a particular level. It should also have the ability to generate other managers that might need to be globally accessible as well, such as an AudioManager or a game saving system, so that in the future we can add more systems without needing to change the basis of the GameManager. We'll also want it to be able to track the game's state. Game state is a bigger topic that we'll discuss a little later on in this course but for now let's say that we want some sort of status describing whether a game is controllable and whether other systems and simulations in the game should continue running.

Last, we want our game manager to be able to shut down the game and clean up anything that needs to be cleaned up. Eventually this might mean writing a save system or sending messages to a server to indicate something about how the player quit the game.

Demo

Set up our project

Prepare to handle multiple scenes

Presenter
Presentation Notes
Now that we have a set of basic requirements of what our game manager will do. Let's set up our project, get ready to start using multiple scenes and begin writing some code

	Swords and Shovels: �Game Managers, Loaders, and the Game Loop
	Games are a collection of systems.
	Slide Number 3
	Game Systems
	Game Systems
	Complicated systems are hard to debug.
	Game Systems
	Slide Number 8
	Persistent Systems
	Game Manager
	Globally accessible�for the life of the game
	Unity Containers
	Unity Containers
	Game Start
	Load Level 1
	Unload Level 1
	Load Level 2
	Preparing to Requirements
	It’s okay to not have everything designed.
	Requirements
	Slide Number 21

