

Unity Student Worksheet Lesson 1: Force

Parameter check:

What parameters did you use in Lesson 1?:
The formula to calculate force is:
The formula that calculates velocity is:
The formula that calculates acceleration is:
There are a set of parameters that don't allow the ball to launch:
What are they?
Why don't they work?

Find the acceleration in the launch direction of your ball right after it was released, use the parameters you entered in the forces lesson. Write out the variables that you know first, then document your calculations.

Knowns:

F=

m =

a = ?

Calculate the average velocity of the b and time displayed in the unity editor. Knowns:	oall in the horizontal a	xis using the distance	2
d =			
t =			
v _x = ?			
Will the velocity profile in the x-axis cha	ange at different poir	nts along the trajector	y of the projectile?
Lesson 2: Ene			
Parameter check	•		
What parameters did you use in Lesso	on 2?		
What are the four kinematic equations	;? 		
Explain how the law of conservation of	of energy applies to th	e catapult and canno	nball:

Use the kinematic equation to calculate the vertical velocity of the cannonball at the top of it's arc; use the parameters from lesson 2. The calculation for the initial vertical velocity components has already been started for you. Round the velocities to a whole number in your calculations.

Knowns: $V_{i} = V_{i} \sin(45)$ $t = V_{iy} = V_{i} \sin(45)$ $t = V_{iy} = V_{i} \times 0.707$ $V_{iy} = V_{i} \times 0.707$ $V_{iy} = V_{i} \times 0.707$

Use the same formula to find the vertical acceleration of your cannon ball from the top of its arc to the bottom of the parabola. The final velocity you calculated above is now your initial velocity. Round your final answer to the nearest tenth.

Knowns: $V_{iy} = V_{fy} = V_f \sin(45)$ $V_{fy} = V_f \sin(45)$ $V_{fy} = V_f \times 0.707$ $V_{fy} = V_f \times 0.707$ $V_{fy} = V_f \times 0.707$

Was the vertical velocity at the midpoint you calculated close to zero m/s? What does your answer for the velocity reveal about the energy state of the ball? Will this always be the case?

Is your answer for the vertical acceleration close to any significant value? What does your answer reveal

about the movement of the ball in the vertical plane?

What is the minimum mass of the ball needed to knock	over all the blocks?			
What is the minimum spring force value needed to knock over all the blocks?				

