Quiz

Name: \qquad

Knowns:

$$
\begin{gathered}
v=d / t \\
d=v \times t \\
d=14.59 \frac{\mathrm{~m}}{\mathrm{~s}} \times 2.97 \mathrm{~s} \\
d=43.33 \mathrm{~m}
\end{gathered}
$$

$v=14.59 \mathrm{~m} / \mathrm{s}$
$\mathrm{t}=2.97 \mathrm{~s}$

1. Calculate the distance of the ball in the horizontal direction if it was launched at a velocity of $14.6 \mathrm{~m} / \mathrm{s}$ in the x axis and it was in flight for 2.97 s .

If you knew that to hit only the top four boxes off of the free play boxes simulator the acceleration needed was $302.53 \mathrm{~m} / \mathrm{s} 2$ and the spring force vector needed was 2269 N , what would the mass of the ball need to be?

Knowns:

$$
v_{i x}=v_{i} \cos \theta
$$

$$
v_{i y}=v_{i} \sin \theta
$$

$\mathrm{V}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}$

$$
v_{i x}=20 \cos 60
$$

$$
v_{i y}=20 \sin 60
$$

$\Theta=60^{\circ}$

$$
v_{i x}=10 \mathrm{~m} / \mathrm{s}
$$

$$
v_{i y}=17.3 \mathrm{~m} / \mathrm{s}
$$

If the cannonball has a launch angle of 60° and an initial velocity of $20.0 \mathrm{~m} / \mathrm{s}$, calculate the horizontal and vertical components of the velocity vector.

Bonus: Set the mass of the cannonball to 10 kg and the spring force slider to 5000 N . Use the different steps of the lessons to help you answers the following questions.
a) Notice how in lesson 1 the resultant force vector before the ball is released is not parallel to the spring force vector, why is this?
b) If the spring force vector is angled at 45° above the horizontal, calculate the actual angle of release of the cannonball along the trajectory of the resultant force.

Hint: You can check your work by ensuring that your final resultant force is the same as what's shown in the unity simulation

