
1

Unit 3 Lab
Player Control

Steps:
Step 1: Create PlayerController and plan your code

Step 2: Basic movement from user input

Step 3: Constrain the Player’s movement

Step 4: Code Cleanup and Export Backup

Example of progress by end of lab

Length: 60 minutes

Overview: In this lesson, you program the player’s basic movement, including the code
that limits that movement. Since there are a lot of different ways a player can
move, depending on the type of project you’re working on, you will not be
given step-by-step instructions on how to do it. In order to do this, you will
need to do research, reference other code, and problem-solve when things go
wrong.

Project
Outcome:

The player will be able to move around based on user input, but not be able to
move where they shouldn’t.

Learning
Objectives:

By the end of this lab, you will be able to:
- Program the type of player movement you want based on user input
- Restrict player movement in the manner that is appropriate, depending on

the needs of the project
- Troubleshoot issues and find workarounds related to player movement

© Unity 2019 Lab 3 - Player Control

2

Step 1: Create PlayerController and plan your code
Regardless of what type of movement your player has, it’ll definitely need a PlayerController
script
1. Select your Player and add a

Rigidbody component (with or without
gravity enabled)

2. In your Assets folder, create a new
“Scripts” folder

3. Inside the new “Scripts” folder, create
a new “PlayerController” C# script

4. Attach it to the player, then open it
5. Determine what type of programming

will be required for your Player

- Tip: Rigidbody is usually helpful - also detect
triggers

- Tip: Think about all the movement we’ve done so
far:
- Prototype 1 - forward/back and rotate based

on up/down and left/right arrows
- Challenge 1 - plane moving constantly, rotated

direction based on arrows
- Prototype 2 - side-to-side movement and

spacebar to fire a projectile
- Challenge 2 - No player movement, but

projectile launch on spacebar
- Prototype 3 - background move, and player

jumps on spacebar press
- Challenge 3 - background move and player

floats up when spacebar down
- Don’t worry: If you want your player to move like

the ball in Prototype 4, just use basic alternative for
now

References to the various types of movement programmed up to this point in the course

By the end of this step, you should have a new Script open and a solid plan for what will go in it.

© Unity 2019 Lab 3 - Player Control

3

Step 2: Basic movement from user input
The first thing we’ll program is the player’s very basic movement based on user input
1. Declare a new private float speed variable
2. If using physics, declare a new Rigidbody

playerRb variable for it and initialize it in Start()
3. If using arrow keys, declare new verticalInput

and/or horizontalInput variables
4. If basing your movement off a key press,

create the if-statement to test for the
KeyCode

5. Use either the Translate method or AddForce
method (if using physics) to move your
character

- Explanation: Rigidbody movement with
AddForce is different than Translate -
looks more similar to real world movement
with force being applied

- Don’t worry: If your player is colliding with
the ground or other objects in weird ways -
we’ll fix that soon

- Tip: You can look through your old code
for references to how you did things

By the end of this step, the player should be able to move the way that you want based on user
input.

© Unity 2019 Lab 3 - Player Control

4

Step 3: Constrain the Player’s movement
No matter what kind of movement your player has, it needs to be limited for gameplay

1. If your player is colliding with objects they shouldn’t
(including the ground), check the “Is trigger” box in the
Collider component

2. If your player’s position or rotation should be
constrained, expand the constraints in the Rigidbody
component and constrain certain axes

3. If your Player can go off the screen, write an
if-statement checking and resetting the position

4. If the Player can double-jump or fly off-screen, create a
boolean variable that limits the user’s ability to do so

5. If your player should be constrained by physical
barriers along the outside of the play area, create more
primitive Planes or Cubes and scale them to form
walls

- Tip: Check the Global/Local
checkbox above scene view to see
the rotation of the player

- Tip: Look back at Prototype 2 for
the if-then statement to keep the
player on screen

- Tip: Look back at Prototype 3 and
Challenge 3 for examples of
booleans to prevent
double-jumping or going too high

By the end of this step, the player’s movement should be constrained in such a way that makes your
game playable.

© Unity 2019 Lab 3 - Player Control

5

Step 4: Code Cleanup and Export Backup
Now that we have the basic functionality working, let’s clean up our code and make a backup.

1. Create new Empty game objects and nest objects
inside them to organize your hierarchy

2. Clean up your Update methods by moving the
blocks of code into new void functions (e.g.
“MovePlayer()” or “ConstrainPlayerPosition()”)

3. Add comments to make your code more readable
4. Test to make sure everything still works, then save

your scene
5. Right-click on your Assets folder > Export Package

then save a new version in your Backups folder

- Tip: You always want to keep your
Update() functions clean or they can
become overwhelming - it should be
easy to see what actions are
happening every frame

// Move the player left/right and up/down based on arrow keys

void MovePlayer() {
 ...

}

// Prevent the player from leaving the screen top/bottom

void ConstrainPlayerPosition() {
 ...

}

By the end of this step, your code should be commented, organized, and backed up.

Lesson Recap
New Progress ● Player can move based on user input

● Player movement is constrained to suit the requirements of the game

New Concepts
and Skills

● Program in C# independently
● Troubleshoot issues independently

© Unity 2019 Lab 3 - Player Control

