
SPACE SHOOTER IN UNITY 5

This upgrade guide will help you follow the Space Shooter tutorial
series using Unity 5.

The official video tutorials can be found on our Learn page here:
http://unity3d.com/learn/tutorials/projects/space-shooter-tutorial

The official Space Shooter assets can be found here:
https://www.assetstore.unity3d.com/en/content/13866

For any problems, issues, questions or comments, please use the
official Unity Community forum thread:
http://forum.unity3d.com/threads/space-shooter-tutorial-
q-a.313899

The Space Shooter project was originally recorded under an early
version Unity 4. There have been a number of changes to Unity
since the original recordings were made. These include an entire
new way to create in game user interfaces, an optimization of the
underlying physics system, increased modularization of the editor
and more. The impact of these changes on the Space Shooter
project are, luckily, minimal. This document will go into the details
of what has changed, and what changes need to be made in
a new project following the existing videos. The upgrade guide is
arranged by episode, and then by the time-stamp on the video
where the upgrade is required.

Please turn “Annotations” ON when watching these video tutorials,
as the annotations will mention these upgrade issues in the video.

Let’s get started!

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

01. SETTING UP THE PROJECT

No known issues.

02. THE PLAYER GAMEOBJECT

01:05 Renaming the Player GameObject

To rename the Player GameObject, the lesson mentions using the
<return> or <enter> key to enable editing. This only works on Mac OS
and is not true for Windows. For both Mac OS and Windows, clicking
on the GameObject twice - slowly, will enable editing. It is also
possible, on both operating systems, to Right-Click the GameObject
to bring up a context sensitive menu that includes “Rename”. This will
also enable editing.

06:05 A NOTE ON COMPOUND COLLIDERS

It is worth noting that in Unity 5, due to a change in the underlying
PhysX physics engine, compound colliders will now return multiple
messages if multiple colliders are hit during the same frame.
For more information, please see the documentation.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

02. THE PLAYER GAMEOBJECT (continued)

06:20	 Replacing the Capsule collider with the Mesh collider

Automatic Collider replacement has been removed from Unity 5.
There is no longer a dialogue box asking to replace the existing
Collider component with the new Collider being selected from the
Add Component menu.

This message is obsolete in Unity 5.

The new Mesh Collider will not replace the existing Capsule Collider
automatically. The new Mesh Collider will be added to the Player
GameObject.

Once the Mesh Collider component has been added to the Player
GameObject, the existing Capsule Collider must be removed using
the context sensitive “gear” menu in the upper right of the Capsule
Collider component.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

02. THE PLAYER GAMEOBJECT (continued)

06:20	 Replacing the Capsule collider with the Mesh collider (continued)

The Player GameObject should now have the Mesh Collider Only and
no Capsule Collider.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

02. THE PLAYER GAMEOBJECT (continued)

06:35	 Using and Visualizing the Mesh Collider

The Mesh Collider component will not participate properly in physics
collisions and will not be visible in the scene view unless we select
“Convex” on the Mesh Collider Component.

In Unity 5, the Mesh Collider component needs to be Convex to be
able to participate properly in physics collisions.

When “Convex” is not selected, the Mesh Collider will not participate
properly in physics collisions and will not be visible in the scene view.

Please note: The “Convex Mesh Collider” will look differently in the
scene compared to the video presentation. It should look similar to
this:

08:05	 Setting the Mesh Collider Component options

As well as setting “Is Trigger” to true, we must also make sure (as
mentioned in the step above) that the “Convex” value is selected as
well. The final version of the Mesh Collider component should look like
this:

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING

05:03	 The Background, The Skybox and Solid Color

In the video lesson, the background is a uniform blue.

However, in Unity 5, depending upon the direction of the Main
Camera’s rotation, the background will either be a procedural horizon,
or brown:

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING (continued)

05:03	 The Background, The Skybox and Solid Color (continued)

This is because, by default in Unity 5, a Skybox is included in the
scene. This skybox will influence the ambient light affecting the ship
and will be used as the background image by the Main Camera.

In the video lesson the background is blue because there is no skybox
being used, and the Camera is falling-back on the default solid color
in the absence of a skybox.

05:48	 The Default Directional Light

Unity creates a default “Directional Light” in every scene.

Later in this lesson, new lights will be created as needed.

Please select the default “Directional Light” GameObject and delete it.

06:00	 Ambient Light

Lighting has significantly changed in Unity 5. This includes how
Ambient light works and where to find the settings.

To find the settings for lighting and the related scene settings, open
the Lighting Panel. This panel can be found in Window/Lighting. Once
the Lighting Panel is open, select the Scene tab.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING (continued)

06:00	 Ambient Light (continued)

Please note that it is possible to dock this windows in the editor, and it
may be wise to do so now.

The current Lighting Panel in Unity 5

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING (continued)

06:00	 Ambient Light (continued)

As indicated in the video lesson, Ambient Light can be a constant
color, but by default, Ambient Light uses the Skybox to set it’s color
values:

To have no contribution to the lighting from Ambient Light, the
Ambient Light source must have no value. This can be done by either
leaving the Ambient Source as Skybox and making sure Skybox is
None, or by setting the Ambient Source to Color and making sure the
color is Black.

To remove the Skybox, simply delete it. The Skybox field is a asset field
like all of the other asset fields in the inspector.

You can either select the target button to the right (the circle with the
dot in the middle) and it will open up an asset picker window:

Here you can choose “None”, or ...

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING (continued)

06:00	 Ambient Light (continued)

Simply select the skybox field:

... and use the backspace or delete key to remove it.

In the end it should look like this:

07:03	 Creating a Directional Light

Please make sure the default Directional Light was removed as
mentioned above before continuing on.

To create a new Directional Light, use the menu option found under:
Create/Light/Directional Light.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

03. CAMERA AND LIGHTING (continued)

08:30	 Adjusting the Main Light’s Intensity

One of the many changes to the Lighting System in Unity 5 is how
basic materials respond to lights. Shaders no longer apply a 2x
multiply of light intensity:
http://docs.unity3d.com/Manual/UpgradeGuide5-Shaders.html

This means “in general” lights are half as strong as they used to be
in Unity 4 and earlier. In general, the Light’s Intensity value should be
doubled now compared to the values in the video lesson.

In this particular case, it was felt that a value of 2.0 was correct, which
is more than twice the existing value. You should balance these
lights to your particular taste. If you like your choice of lighting, then
it’s perfect. It doesn’t affect anything later on in this lesson in any
technical way.

10:15	 Adjusting the Fill Light’s Intensity

A suggested value of 1.0 felt correct here. This is twice the value in the
video lesson.

12:10	 Adjusting the Rim Light’s Intensity

A suggested value of 0.5 felt correct here. This is twice the value in the
video lesson.

This makes the overall suggested values for the lights:
Main: 2.0
Fill: 1.0
Rim: 0.5

12:34	 Hierarchy Sort Order

Please Note: The Hierarchy no longer sorts alphabetically by default,
but by Transform Order. By default, the hierarchy order can be
reordered at will. Be aware that the hierarchy order can influence the
project’s behaviour. For example, the render order of UI Elements is
influenced by transform order. Please see the documentation for more
information:
http://docs.unity3d.com/Manual/Hierarchy.html

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

04. CAMERA AND LIGHTING

00:24	 Creating a “Quad”

Please Note: This menu item has moved. It can now be found by
navigating to “Create/3D object/Quad” the hierarchy’s create menu.

04:00	 Creating new Materials

Materials are created using the Standard Shader. This new material
will be created with a default “opaque” setup very similar to the former
“default diffuse”.

For more information please see:
• http://docs.unity3d.com/Manual/Shaders.html
• http://unity3d.com/learn/tutorials/modules/beginner/unity-5/unity5-
lighting-overview
• http://unity3d.com/learn/tutorials/modules/beginner/graphics/
lighting-and-rendering

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

04. CAMERA AND LIGHTING (continued)

06:04	 The Standard Shader

This Material is using the Standard Shader. The Standard Shader
contains a number of detailed settings for this material, allowing for a
fewer number of different shaders to create materials with.

The Standard Shader is a physicslly based shader (http://docs.unity3d.
com/Manual/shader-StandardShader.html). This allows for a more
friendly way of achieving a consistent look under different lighting
conditions.

With the current default settings, the material applied to the
“Background Quad” is acting a little like a “simple painted
background”. However, with a Smoothness of 0.5, it may be less matte
than the “default diffuse” material shown in the video.

07:30	 Changing Shaders on a Material

This Material is using the Standard Shader set to default opaque.

This is very similar to the Default Diffuse shader shown in the video.
The settings on the Standard Shader make this Material behave in
a way very much like a surface painted with Matte Paint. Due to the
Smoothness setting of 0.5, it may behave more like a “semi-gloss”
paint. To make the surface behave like Glossy Paint, there is no need
to change the shader - simply change the Smoothness setting on the
Standard Shader.

Try this: Angle the camera so that one of the directional lights is
reflecting off of the surface of the Background and change the
smoothness from 0 to 1 and back again while observing how the
surface of the quad reacts.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

04. CAMERA AND LIGHTING (continued)

07:30	 Changing Shaders on a Material (continued)

For more information please see the documentation on the Standard
Shader and details on the Smoothness property: http://docs.unity3d.
com/Manual/StandardShaderMaterialParameterSmoothness.html.

05. MOVING THE PLAYER

00:00 Changes to Scripting in Unity 5

Unity no longer uses “Helper References” to access common
components.

In Unity 5 and later we can no longer access components using their
“shorthand helper references” and we must access them directly
using “GetComponent”.

One example of this is accessing the Rigidbody component attached
to the same GameObject as the script. In Unity 4 and earlier, this was
simply accessed with “rigidbody.”

Now this must be done with “GetComponent<Rigidbody>().”

It is usually a “best practice” to find this Component when the
instance of the script initializes, and “cache” the reference in a local
variable.

This is commonly written as:

private Rigidbody;

void Start ()
{
		 rb = GetComponent<Rigidbody>();
}

Now, with the reference to the local Rigidbody component saved in
the variable “rb”, we can use this reference anywhere within the script.

One example would be to add force to the rigidbody with:

rb.AddForce (someVector3Value);

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

05. MOVING THE PLAYER (continued)

01:55 Clarifying terminology

The voice over in the lesson mentions “CamelCase”. For the sake of
accuracy, in computing terms, this should have been“Pascal Case”.
For more information of this terminology, please see the link below:
https://en.wikipedia.org/wiki/CamelCase

04:35 Updating the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such
as “rigidbody.” and we must access them directly using
“GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<Rigidbody>().” It is best to “cache” this reference in
a local variable when the instance of the script is initialized.

Please declare a local member variable to hold the Rigidbody
reference by writing at the top of the class:

private Rigidbody rb;

… and in void Start() write:
rb = GetComponent<Rigidbody>();

The top of the script should now read:

public class PlayerController : Monobehaviour
{
		 private Rigidbody rb;

		 void Start ()
		 {
			 rb = GetComponent<Rigidbody>();
		 }

From here on, while writing code addressing the Rigidbody
component, do not use rigidbody. but please use rb, as rb now
contains a reference to the local Rigidbody component attached to
the Player GameObject.

The line being written in the video should now read as:

rb.velocity = some Vector3 value;

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

05. MOVING THE PLAYER (continued)

09:50 Updating the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such
as “rigidbody.” and we must access them directly using
“GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<Rigidbody>().” It is best to “cache” this reference in
a local variable when the instance of the script is initialized.

Assuming that the reference to the local Rigidbody component was
cached as per the previous upgrade note (see Ep 5, 4:35), the line
being written in the video should now read as:

rb.position = new Vector3 (x, y, z);

18:20 Updating the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such
as “rigidbody.” and we must access them directly using
“GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<Rigidbody>().” It is best to “cache” this reference in
a local variable when the instance of the script is initialized.

Assuming that the reference to the local Rigidbody component was
cached as per the previous upgrade note (see Ep 5, 4:35), the line
being written in the video should now read as:

rb.rotation = Quaternion.Euler (x, y, z);

06. CREATING SHOTS

01:00 Creating a “Quad”

Please Note: This menu item has moved. It can now be found by
navigating to “Create/3D object/Quad” the hierarchy’s create menu.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

06. CREATING SHOTS (continued)

03:20 The “Default Diffuse” shader has been replaced

For the purposes of this lesson, when using the Standard Shader,
the “Main Texture” property of the Default Diffuse shader has been
replaced by the “Albedo” property. Please follow the instructions in the
video, but use the “Albedo” field rather than the “Main Texture” field.

For more detailed information, please see the documentation on
the Standard Shader: http://docs.unity3d.com/Manual/shader-
StandardShader.html.

04:10 Using the “Albedo” field instead of the “Main Texture” field

As we are using the Standard Shader, please drop the Texture into the

“Albedo” field on the material.

07:40 Viewing the Quad’s collider in the Scene View

Please Note: The collider will only be visible in the scene if “convex” is
selected on the collider component.

11:00 Updating the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such
as “rigidbody.” and we must access them directly using
“GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<Rigidbody>().” It is best to “cache” this reference in
a local variable when the instance of the script is initialized.

Please declare a local member variable to hold the Rigidbody
reference by writing at the top of the class:

private Rigidbody rb;

… and in void Start() write:

rb = GetComponent<Rigidbody>();

From here on, while writing code addressing the Rigidbody
component, do not use rigidbody. but please use rb, as rb now
contains a reference to the local Rigidbody component attached to
the Player GameObject.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

06. CREATING SHOTS (continued)

11:00 Updating the code to avoid obsolete reference (continued)

The line being written in the video should now read as:

rb.velocity =

The top of the script should now read:

public class Mover : Monobehaviour
{
		 private Rigidbody rb;

		 void Start ()
		 {
			 rb = GetComponent<Rigidbody>();
			 rb.velocity =
		 }

12:40 Setting the Speed value on the Prefab

Please note that we are setting this value on the PREFAB in the Project
View, not the INSTANCE in the Scene.

07. SHOOTING SHOTS

No known issues.

01 GAME SETUP, PLAYER AND CAMERA

SPACE SHOOTER IN UNITY 5

01. BOUNDARY

00:52 Creating a “Cube”

Please Note: This menu item has moved. It can now be found by
navigating to “Create/3D object/Cube” the hierarchy’s create menu.

02. CREATING HAZARDS

02:33 Editing the Collider component’s shape in the Scene view

Colliders are now edited by selecting the “Edit Collider” button on the
Collider component.

03:45 Update the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such
as “rigidbody.” and we must access them directly using
“GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<Rigidbody>().” It is best to “cache” this reference in
a local variable when the instance of the script is initialized.

Please declare a local member variable to hold the Rigidbody
reference by writing at the top of the class:

private Rigidbody rb;

… and in void Start() write:

rb = GetComponent<Rigidbody>();

From here on, while writing code addressing the Rigidbody
component, do not use rigidbody. but please use rb, as rb now
contains a reference to the local Rigidbody component attached to
the Player GameObject.

The line being written in the video should now read as:

rb.angularVelocity =

02 BOUNDARIES, HAZARDS AND ENEMIES

SPACE SHOOTER IN UNITY 5

02. CREATING HAZARDS (continued)

03:45 Update the code to avoid obsolete references (continued)

The top of the script should now read:

public class RandomRotator : Monobehaviour
{
		 private Rigidbody rb;

		 void Start ()
		 {
			 rb = GetComponent<Rigidbody>();
			 rb.angularVelocity =
		 }

11:55 Assigning Tags and Layers

The Tags and Layers panel has been redesigned. To add a new tag,
press the ‘+’ button on the tags list:

03. EXPLOSIONS

No known issues.

04. GAME CONTROLLER

No known issues.

05. SPAWNING WAVES

No known issues.

02 BOUNDARIES, HAZARDS AND ENEMIES

SPACE SHOOTER IN UNITY 5

01. AUDIO

07:15 Update the code to avoid obsolete references

Please Note: In Unity 5 and later we can no longer access
components using their “shorthand helper references” such as
“audio.” and we must access them directly using “GetComponent”.

To access the local Rigidbody component, please use
“GetComponent<AudioSource>().” It is best to “cache” this reference
in a local variable when the instance of the script is initialized.

Please declare a local member variable to hold the Rigidbody
reference by writing at the top of the class:

private AudioSource audioSource ;

… and in void Start() write:

audioSource = GetComponent<AudioSource >();

… then use the line:

	 audioSource.Play();

02. COUNTING POINTS AND DISPLAYING SCORE

07:15 Adding a GUIText Component

To Create a GUIText GameObject in 4.6 and later, please do the
following:

• Create a new Empty GameObject

• Select the new GameObject

• Add a GUIText component -
 - from the Add Component Button
	 or
 - from the Component Menu

 ... found at: Component/Rendering/GUIText

03 SCORING, FINISHING AND BUILDING THE GAME

SPACE SHOOTER IN UNITY 5

02. COUNTING POINTS AND DISPLAYING SCORE (ctd)

07:15 Adding a GUIText Component (continued)

• Update the GUIText’s transform position to (0.5, 0.5, 0.0)
	 - This will place the GUIText into the middle of the screen.

• Update the GUIText.text with “Score Text”.
	 - This will make the GUIText object easier to see on screen.

03. ENDING THE GAME

00:55 Adding a GUIText Component

Please see the note above (Sect. 3, Ep. 2, 07:15) for details.

Update the GUIText.text with “Restart Text”.

03 SCORING, FINISHING AND BUILDING THE GAME

SPACE SHOOTER IN UNITY 5

03. ENDING THE GAME (continued)

02:51 Adding a GUIText Component

Please see the note above (Sect. 3, Ep. 2, 07:15) for details.

Update the GUIText.text with “Game Over Text”.

04. BUILDING THE GAME

No known issues.

03 SCORING, FINISHING AND BUILDING THE GAME

